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ABSTRACT. Depending on the increasing population and nutritional needs, we should develop new 

methods and systems in agricultural production that take environmental issues into account and ensure 

efficiency and sustainability. Inappropriate pest control methods can result in 70% of yield loss. The 

caterpillar is a pest that can be invasive and can damage yield by eating the leaves, shoots, fruit and flower 

parts of plants and trees. Pesticide spraying is the most preferred pest control method due to its speed of 

action and scalability. However, due to the increasing environmental and health awareness, less pesticide 

use is required. One of the important methods of reducing pesticide usage is to spray only the places where 

they are needed. In order to perform spot spraying, first of all, the location of the pest must be determined. 

It is possible to detect pests using computer vision methods. In the study, we developed an object detection 

system to detect the thistle caterpillar (Vanessa cardui), which is encountered in Turkey and can cause 

damage to sunflower cultivation, in real time via video using the YOLOv5 object detection architecture. 

For this purpose, we used 2416 images taken under different lighting and background conditions. We 

trained the object detection system in two different ways using transfer learning and learning from scratch 

methods and compared the results. Results indicate that the system is functional and being able to correctly 

detect the thistle caterpillar at 65 FPS. 

 

Keywords: Deep Learning, Pest Detection, Real Time Detection, YOLOv5 

INTRODUCTION 

Inappropriate pest control methods can result in 70% of yield loss. Agricultural pests 

can cause 33% of potential damage. In addition, loss of quality can cause 15% economic 

loss. [4]. Pests and diseases cause 20-40% loss of agricultural products worldwide. An 

economic loss of 220 billion USD occurs due to plant diseases and 70 billion USD due to 

pests [3]. Changes that occur as a result of climate change increase the incidence of 

diseases and pests and cause them to be seen in places that have not been seen before. 

[12]. The caterpillar is a pest that can be invasive and can damage yield by eating the 

leaves, shoots, fruit and flower parts of plants and trees. [2, 22]. There are many caterpillar 

species that are the main pests in arable farming, horticulture and fruit production [1, 10, 

20]. Pesticide spraying is the most preferred pest control method due to its speed of action 

and scalability [13]. However, due to the increasing environmental and health awareness, 

less pesticide use is required. One of the important methods of reducing pesticide usage 

is to spray only the places where they are needed. It is known that pesticide spraying costs 

can be reduced by 90% with spot spraying applications [16]. In order to perform spot 

spraying, first of all, the location of the pest must be determined. Manual methods are 

commonly used for the detection of pests, which are labor dependent and therefore highly 

error-prone [7]. However, due to the developing technology, it is possible to detect pests 

using image processing methods. 

Deep neural networks are widely used in computer vision applications due to their 

automatic feature extraction and ability to extract complex relationships [5]. 

mailto:erayonler@nku.edu.tr


Önler: Real time pest detection using YOLOv5 

233 

Technological developments in GPUs (Graphical Processing Unit) have been able to train 

deeper artificial neural networks that can process more data. Deep neural networks, which 

proved their accuracy in object classification, have also been used in object detection 

algorithms. The most widely used object detection algorithms are divided into 

classification based object detectors (two-stage detectors) and regression based object 

detectors (one-stage detectors). Two-stage object detectors have higher object detection 

accuracy than single-stage object detectors, but they are slower in terms of inference 

speed [11]. 

In this study, we aimed to detect the thistle caterpillar in real time from digital 

image/video by using the YOLOv5 object detection architecture which is based on the 

one-stage object detector YOLO (You Look Only Once) [14] method.  YOLOv5 versions 

with different sizes, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x architectures, 

were compared in terms of mAP (mean average precision) and inference speed with 

agricultural damage-causing thistle caterpillar images using transfer learning and training 

from scratch. 

The results show that the developed system is functional and can detect the spiny 

caterpillar. We observed that the object detection system we developed can detect objects 

at 65 FPS with the use of the Tesla K80 12 GB (Gigabyte) GPU in the Google COLAB 

development environment. In addition, it has been observed that the model can learn 

faster when transfer learning is used. 

MATERIAL AND METHODS 

Our research approach consists of 5 consecutive steps (Fig. 1). First, we collected a 

dataset of thistle caterpillar images that we will use in the training and validation of the 

object detection system. Then, we pre-processed this entire dataset by annotation. We 

trained the YOLO object detection models with the dataset, which we split for training. 

Using the dataset we split for validation, we validated the real-time detection performance 

of the trained YOLO models and evaluated the results.  
 

 
Fig. 1. Research approach 

Dataset Collection 

To train and validate the object detection system, we used open-source images of 

thistle caterpillars captured on soybeans (Fig. 2). The dataset we used was divided by the 

owner to include 1934 images for training and 241 images for testing and 241 images for 

validation [18]. In the study, we combined the test and validation folders in the original 

dataset and used them in the validation of the trained models. After training and testing 

different model variations, we identified the most successful model in terms of mAP. To 

test the generalizability of this model and whether it can be used to detect different 

caterpillar species, we used images of cabbage caterpillars (Pieris brassicae) taken in 

September 2021, which were encountered in a cabbage-growing farm in the Muratbey 

District of Catalca - Istanbul - Turkey 
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Fig. 2. Images of Thistle Caterpillars we use in training and validation of object 

detection models  

Data Annotation 

We subjected the thistle caterpillar images, which we divided into different folders for 

training and validation, to data annotation in YOLO format. We performed the annotation 

manually with the free data annotation app makesense.ai (Fig. 3). 

 
Fig. 3. Image Annotation App 

 

The annotation process consists of marking the object to be detected on each image by 

taking it into a rectangle. More than one object can be marked on the image. Information 

about the objects marked on each image is stored in a text file with the same name as the 

related image. This text file has one line per object. In each line in the YOLO annotated 

file, the data includes the class of the marked object, the center of the drawn rectangle on 

the x and y axis, and the width and height of the rectangle. The coordinates of the rectangle 

are normalized between 0 and 1 to be independent of the image size. Thus, since each 

image will be evaluated according to its size, images with different sizes can be used in 
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the object detection system. Figure 4 shows the content of the sample annotation file of 

an image. For each image, we created a text file with the same name as the image, which 

contains the annotated information. 

 
Fig. 4.  Sample annotation file for an image 

YOLOv5 

YOLOv5 is a one-stage object detection architecture. One-stage object detection 

architectures treat object detection as a regression problem. It estimates the class 

probability and the coordinates of the bounding box that will contain the object in a single 

step on the input image [19]. Like other one-stage object detection architectures (SSD, 

YOLOv3, YOLOv4, RetinaNet etc.), it consists of three basic parts: backbone, neck and 

head (Fig. 5). The head layer is also called the YOLO layer. 

The task of the model backbone is to reveal the distinctive features from the given 

image. CSPNet (Cross Stage Partial Networks) structure is used as the model backbone 

in YOLOv5 [24]. In large-size neural network backbones, the gradient information is 

copied in updating the layer weights and most of them have to be learned over and over 

again. This is a situation that negatively affects model size and inference speed. In the 

CSPNet approach, the feature map in the base layer is divided into two, some of them 

reach the transition layer through the dense block, and the other part is directly combined 

with the transition layer. In this way, not only the model size is reduced, but also the 

inference speed increases [25]. 

 

Fig. 5. YOLOv5 Architecture [25] 
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The model neck is used to create feature pyramids. With feature pyramids, the model 

can be generalized for different dimensions of the object (Fig. 6). Thus, images of the 

same object in different sizes and scales can be detected. YOLOv5 is using the PANet 

(Path Aggregation Network) feature pyramid. In PANet feature transfer, it creates an 

information shortcut that will allow localization signals from lower layers to reach the top 

feature layers without being lost. For this, an additional bottom-up path augmentation is 

added to the classical FPN (Feature Pyramid Network) [9, 21]. 

 

Fig. 6. Two Types Feature Pyramids [21] 

The model head is also called the YOLO layer and is the step in which the object and 

object position are predicted. The YOLO layer outputs vectors containing class 

probability, confidence score and bounding box coordinates. 

In the study, we used 4 versions of YOLOv5, which are named according to model 

size and complexity, as small, medium, large and extra large. The results obtained when 

these models are trained on the COCO dataset [6] are shown in Fig. 7 COCO is a dataset 

of 80 classes and 330k images used as a benchmark to compare object detection 

architectures. 

 
Fig. 7. Yolov5 versions of different complexity [23] 

Transfer Learning 

Machine learning methods based on the use of neural networks are very data hungry. 

Especially in applications based on computer vision, collecting a large number of images 
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and annotating them all is a time-consuming and costly process. With transfer learning, 

it has become possible to transfer basic and common features learned by models trained 

on another domain to other models. Thus, while transferring low-level features, learning 

only higher-level features in the new model can be achieved with relatively less data [26]. 

For this purpose, transfer learning was applied using models trained on the COCO dataset 

by using their pre-trained weights. 

 

Performance Evaluations 

We used mAP@IoU=0.5 ( IoU: Intersection over Union), mAP@IoU=0.5:0.95, 

Precision, Recall and Inference time to compare the performance of the models. IoU is a 

fundamental metric used to compare object detection systems [15]. The relationship 

between the ground truth bounding box annotated by us and the bounding box predicted 

by the model is examined. It is calculated by dividing the intersection sets of these two 

bounding boxes by their union sets (Fig. 8). 

 

 
Fig. 8. IoU calculation [8] 

It is calculated as TP (True Positive) if IoU is greater than the defined threshold value, 

and as FP (False Positive) if it is small. Precision, Recall and mAP performance metrics 

were calculated using the Eqn. 1,2 and 3 respectively with the obtained TP, TN (True 

Negative), FP and FN (False Negative) values. At mAP@IoU=0.5, the threshold value is 

0.5, and for mAP:IoU=0.5:0.95, the threshold value has taken 10 different values between 

0.5 and 0.95 in steps of 0.05. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
    Eqn.1 [8] 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     Eqn.2 [8] 

𝑚𝐴𝑃 =  
1

𝑁
∑𝑁

𝑖=1 𝐴𝑃𝑖   Eqn.3 [8] 

N: Number of queries, AP: Average precision 
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Training 

We used 1934 images for training each model variation of the object detection system. 

In the models, we used the LR (Learning Rate) as 0.01, the photo size as 640 px (pixel), 

the batch size as 16, and the number of epochs as 40. We used SGD (Stochastic Gradient 

Descent) [17] as the optimization algorithm. We trained the models on Google Colab 

using the Tesla K80 12GB GPU. Table 1 shows the number of layers of the models and 

the number of trained parameters. 

 

Table 1. Information on Model Variations Used in Training 

Model Number of Layers Number of Parameters 

YOLOv5x 476 87.178.694 

YOLOv5l 392 46.600.566 

YOLOv5m 308 21.037.638 

YOLOv5s 224 7.053.910 

 

Validation 

For the validation of the trained model, we used a dataset of 482 images. We performed 

the validation of all the trained models on Google Colab using Tesla K80 12 GB GPU. 

As in the training phase, we used the image size as 640 px. 

Testing Generalization of the Model 

We used cabbage caterpillar images to test whether object detection models trained 

with thistle caterpillar images can be generalized to caterpillar detection. We used a total 

of 19 images of cabbage caterpillars encountered in September 2021 in a cabbage-

growing farm in the Muratbey District of Catalca - Istanbul - Turkey. There are 25 

cabbage caterpillar instances in total on these 19 images. We used Google Colab Tesla 

K80 12 GB GPU for object detection on the image. The image size was taken as 640 px, 

in which the models were trained. 

RESULTS AND DISCUSSION 

Results without Transfer Learning 

In models trained without transfer learning, we analyzed the Precision, Recall, 

mAP@IoU:0.5 and mAP@IoU:0.5:0.95 metrics as a result of the training. Fig. 9 shows 

the results of four different model variations. Since the training of the models was started 

from scratch, it is seen that there are fluctuations in all model metrics, especially during 

the first 20 epochs of training. We think that these fluctuations can be reduced by 

increasing the number of epochs. We also observed strong decreases in mAP values in 

YOLOv5x and YOLOv5l models after the 20th epoch. This is because these models 

require longer epoch numbers or more data as they are more complex. 
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Fig. 9. Precision, Recall, mAP@IoU:0.5 and mAP@IoU:0.5:0.95 results without 

transfer learning. (a)YOLOv5x, (b)YOLOv5l, (c)YOLOv5m, (d)YOLOv5s 

After the training of the models was completed, we tried the versions with the best 

results on the validation dataset. Validation dataset consists of 482 images. Trial results 

can be seen in Table 2. The highest model size belongs to YOLOv5x as expected. The 

highest mAP values were obtained in YOLOv5s. The fastest detection time belongs to 

YOLOv5s with 18.3ms. 
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Table 2. Validation dataset results without transfer learning 

Model Precision Recall mAP 

@IoU 

:0.5 

mAP 

@IoU 

:0.5:0.95 

Inference 

Time 

FPS Model 

Size 

YOLOv5x 0.306 0.574 0.208 0.123 131.8ms 7.5 116.9MB 

YOLOv5l 0.428 0.554 0.304 0.231 71.3ms 14 89.3MB 

YOLOv5m  0.563 0.613 0.437 0.271 44.5ms 22 40.4MB 

YOLOv5s 0.629 0.617 0.482 0.285 18.3ms 55 13.7MB 
MB: Megabyte, ms: millisecond, FPS: frame per second 

Results with Transfer Learning 

In models trained using transfer learning, we analyzed the Precision, Recall, 

mAP@IoU:0.5 and mAP@IoU:0.5:0.95 metrics as a result of the training. Fig. 10 shows 

the results of four different model variations. When we compare the training results using 

transfer learning with the training results without transfer learning, the first thing that 

stands out is that the transfer learning models have much more stable metric 

measurements and converge to better results faster. In particular, the fact that the 

YOLOv5x and YOLOv5l models remained in an upward trend in mAP measurements 

indicates that training should be continued with more epochs. 
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Fig. 10. Precision, Recall, mAP@IoU:0.5 and mAP@IoU:0.5:0.95 results with transfer 

learning. (a)YOLOv5x, (b)YOLOv5l, (c)YOLOv5m, (d)YOLOv5s 

After the training of the models was completed, we tried the versions with the best 

results on the validation dataset. Validation dataset consists of 482 images. Trial results 

can be seen in Table 3. The highest model size belongs to YOLOv5x as expected. The 

highest mAP values were obtained in YOLOv5m. The YOLOv5m's detection time is 

close to real-time detection, with 43.4ms. The fastest detection time belongs to YOLOv5s 

with 15.3ms. 
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Table 3. Validation dataset results with transfer learning 

Models  Precision Recall mAP 

@IoU 

:0.5 

mAP 

@IoU 

:0.5:0.95 

Inference 

Time 

FPS Model 

Size 

YOLOv5x 0.743 0.697 0.588 0.464 132.9ms 8 116.9MB 

YOLOv5l 0.747 0.690 0.589 0.463 70.3ms 14 89.3MB 

YOLOv5m  0.746 0.686 0.591 0.464 43.4ms 23 40.4MB 

YOLOv5s 0.740 0.697 0.575 0.451 15.3ms 65 13.7MB 
 

Testing Model as General Caterpillar Detector 

Among the models trained and validated with and without transfer learning, the most 

successful one was the YOLOv5m model, which we trained with transfer learning. This 

model has been examined in terms of real-time object detection with images, which we 

captured in a cabbage-growing farm in the Muratbey District of Catalca - Istanbul - 

Turkey, have not been used in training and validation classes before. Here, we aimed to 

test whether the model could be used as a general caterpillar detector.  

We observed that the model could even detect a different caterpillar species under 

different background, plant species and lighting conditions. It was able to detect more 

than one object at the same time and when light comes from different angles. We used 19 

images in total for testing generalization of the model. 19 of the 25 caterpillars in these 

images were detected. The object detection system we designed made 3 FP, 6 FN 

detections.  



Önler: Real time pest detection using YOLOv5 

243 

 
Fig. 11. Detection results of YOLOv5m (trained with transfer learning)  on different 

caterpillar species  

Discussion 

Fig. 11 shows that our object detection system can be used even in different plant and 

caterpillar species from the training and validation set of YOLOv5m, one of the models 

trained with transfer learning. 

As we can see in Fig. 12, the problems encountered in object detection in the developed 

model can be divided into three parts. These problems are the inability to detect the object 

due to blur and occlusion of the object on the image, and the examples that are incorrectly 

detected due to the similarity of the shape. We used 2416 images for training and 

validation in the study. We found that models trained in 40 epochs, 16 batches, and 640 

px image sizes using the YOLOv5 architecture were able to achieve high mAP (59%) at 

real-time inference speeds. These values obtained are comparable to studies which are 

using two-stage object detection architectures, whose detection accuracy is higher than 

the one-stage architectures we use [8]. Increasing the images similar to the object 

detection errors we encounter in the dataset, as well as using the data augmentation 

methods such as image blur will increase the object detection accuracy. It has been 

observed that mAP can be increased with appropriate data augmentation methods in other 

YOLO based studies [7]. 
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Fig. 12. Common problems we encounter in our object detection system  

CONCLUSIONS 

In this study, we have developed an object detection system that can detect caterpillars 

over digital images/videos by using the YOLOv5 single-stage object detection 

architecture. We used a public dataset consisting of images taken in realistic outdoor 

environments. We performed the training, validating and testing of the system on Google 

Colab using Tesla K80 12GB GPU.  

We reached 65 FPS detection speed and maximum 59% mAP values with the 

parameters we trained. Moreover, our object detection system successfully detected 

different species of caterpillar. The accuracy of the object detection system can be 

improved by increasing the dataset size with new images added and data augmentation 

methods. Also, by adding the images of the caterpillar larvae to the dataset, it can be 

studied to detect the caterpillars in earlier periods. In addition, if different caterpillar 

species are divided into subgroups and annotated based on subgroup names, a multiclass 

detection model to detect caterpillar species can be developed.  
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