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ABSTRACT. Depending on the increasing population and nutritional needs, we should develop new
methods and systems in agricultural production that take environmental issues into account and ensure
efficiency and sustainability. Inappropriate pest control methods can result in 70% of yield loss. The
caterpillar is a pest that can be invasive and can damage yield by eating the leaves, shoots, fruit and flower
parts of plants and trees. Pesticide spraying is the most preferred pest control method due to its speed of
action and scalability. However, due to the increasing environmental and health awareness, less pesticide
use is required. One of the important methods of reducing pesticide usage is to spray only the places where
they are needed. In order to perform spot spraying, first of all, the location of the pest must be determined.
It is possible to detect pests using computer vision methods. In the study, we developed an object detection
system to detect the thistle caterpillar (Vanessa cardui), which is encountered in Turkey and can cause
damage to sunflower cultivation, in real time via video using the YOLOV5 object detection architecture.
For this purpose, we used 2416 images taken under different lighting and background conditions. We
trained the object detection system in two different ways using transfer learning and learning from scratch
methods and compared the results. Results indicate that the system is functional and being able to correctly
detect the thistle caterpillar at 65 FPS.
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INTRODUCTION

Inappropriate pest control methods can result in 70% of yield loss. Agricultural pests
can cause 33% of potential damage. In addition, loss of quality can cause 15% economic
loss. [4]. Pests and diseases cause 20-40% loss of agricultural products worldwide. An
economic loss of 220 billion USD occurs due to plant diseases and 70 billion USD due to
pests [3]. Changes that occur as a result of climate change increase the incidence of
diseases and pests and cause them to be seen in places that have not been seen before.
[12]. The caterpillar is a pest that can be invasive and can damage yield by eating the
leaves, shoots, fruit and flower parts of plants and trees. [2, 22]. There are many caterpillar
species that are the main pests in arable farming, horticulture and fruit production [1, 10,
20]. Pesticide spraying is the most preferred pest control method due to its speed of action
and scalability [13]. However, due to the increasing environmental and health awareness,
less pesticide use is required. One of the important methods of reducing pesticide usage
is to spray only the places where they are needed. It is known that pesticide spraying costs
can be reduced by 90% with spot spraying applications [16]. In order to perform spot
spraying, first of all, the location of the pest must be determined. Manual methods are
commonly used for the detection of pests, which are labor dependent and therefore highly
error-prone [7]. However, due to the developing technology, it is possible to detect pests
using image processing methods.

Deep neural networks are widely used in computer vision applications due to their
automatic feature extraction and ability to extract complex relationships [5].
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Technological developments in GPUs (Graphical Processing Unit) have been able to train
deeper artificial neural networks that can process more data. Deep neural networks, which
proved their accuracy in object classification, have also been used in object detection
algorithms. The most widely used object detection algorithms are divided into
classification based object detectors (two-stage detectors) and regression based object
detectors (one-stage detectors). Two-stage object detectors have higher object detection
accuracy than single-stage object detectors, but they are slower in terms of inference
speed [11].

In this study, we aimed to detect the thistle caterpillar in real time from digital
image/video by using the YOLOV5 object detection architecture which is based on the
one-stage object detector YOLO (You Look Only Once) [14] method. YOLOVS5 versions
with different sizes, YOLOv5s, YOLOv5m, YOLOVS5I, and YOLOV5x architectures,
were compared in terms of mAP (mean average precision) and inference speed with
agricultural damage-causing thistle caterpillar images using transfer learning and training
from scratch.

The results show that the developed system is functional and can detect the spiny
caterpillar. We observed that the object detection system we developed can detect objects
at 65 FPS with the use of the Tesla K80 12 GB (Gigabyte) GPU in the Google COLAB
development environment. In addition, it has been observed that the model can learn
faster when transfer learning is used.

MATERIAL AND METHODS

Our research approach consists of 5 consecutive steps (Fig. 1). First, we collected a
dataset of thistle caterpillar images that we will use in the training and validation of the
object detection system. Then, we pre-processed this entire dataset by annotation. We
trained the YOLO object detection models with the dataset, which we split for training.
Using the dataset we split for validation, we validated the real-time detection performance
of the trained YOLO models and evaluated the results.

Training
Dataset . DLIE! S YOLO model

Validating

YOLO model Performance

evaluation

Collection preprocessing

by using

vialidatinn

Fig. 1. Research approach

Dataset Collection

To train and validate the object detection system, we used open-source images of
thistle caterpillars captured on soybeans (Fig. 2). The dataset we used was divided by the
owner to include 1934 images for training and 241 images for testing and 241 images for
validation [18]. In the study, we combined the test and validation folders in the original
dataset and used them in the validation of the trained models. After training and testing
different model variations, we identified the most successful model in terms of mAP. To
test the generalizability of this model and whether it can be used to detect different
caterpillar species, we used images of cabbage caterpillars (Pieris brassicae) taken in
September 2021, which were encountered in a cabbage-growing farm in the Muratbey
District of Catalca - Istanbul - Turkey
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Fig. 2. Images of Thistle Caterpillars we use in training and validation of
detection models

=

Data Annotation

We subjected the thistle caterpillar images, which we divided into different folders for
training and validation, to data annotation in YOLO format. We performed the annotation
manually with the free data annotation app makesense.ai (Fig. 3).

Fig. 3. Image Annotation App

The annotation process consists of marking the object to be detected on each image by
taking it into a rectangle. More than one object can be marked on the image. Information
about the objects marked on each image is stored in a text file with the same name as the
related image. This text file has one line per object. In each line in the YOLO annotated
file, the data includes the class of the marked object, the center of the drawn rectangle on
the x and y axis, and the width and height of the rectangle. The coordinates of the rectangle
are normalized between 0 and 1 to be independent of the image size. Thus, since each
image will be evaluated according to its size, images with different sizes can be used in
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the object detection system. Figure 4 shows the content of the sample annotation file of
an image. For each image, we created a text file with the same name as the image, which
contains the annotated information.

Open ~ [+ e I:_hI.s__l:"l_e___c_a_t;er.|?!l;l_a_l.r.’|__._t Xt o

10 ©.623299 0.493622 0.164966 0.281531
20 0.148810 0.676658 0.297619 0.172194

PlainText ¥ Tabwidth:8 ~ Ln1, Col1 - INS

Fig. 4. Sample annotation file for an image

YOLOvVS

YOLOV5 is a one-stage object detection architecture. One-stage object detection
architectures treat object detection as a regression problem. It estimates the class
probability and the coordinates of the bounding box that will contain the object in a single
step on the input image [19]. Like other one-stage object detection architectures (SSD,
YOLOvV3, YOLOV4, RetinaNet etc.), it consists of three basic parts: backbone, neck and
head (Fig. 5). The head layer is also called the YOLO layer.

The task of the model backbone is to reveal the distinctive features from the given
image. CSPNet (Cross Stage Partial Networks) structure is used as the model backbone
in YOLOV5 [24]. In large-size neural network backbones, the gradient information is
copied in updating the layer weights and most of them have to be learned over and over
again. This is a situation that negatively affects model size and inference speed. In the
CSPNet approach, the feature map in the base layer is divided into two, some of them
reach the transition layer through the dense block, and the other part is directly combined
with the transition layer. In this way, not only the model size is reduced, but also the
inference speed increases [25].
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Fig. 5. YOLOV5 Architecture [25]
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The model neck is used to create feature pyramids. With feature pyramids, the model
can be generalized for different dimensions of the object (Fig. 6). Thus, images of the
same object in different sizes and scales can be detected. YOLOVS5 is using the PANet
(Path Aggregation Network) feature pyramid. In PANet feature transfer, it creates an
information shortcut that will allow localization signals from lower layers to reach the top
feature layers without being lost. For this, an additional bottom-up path augmentation is
added to the classical FPN (Feature Pyramid Network) [9, 21].

e
o e &
Py %P 4 i}>

P3 O—»‘—» Ps OO+

(a) FPN (b) PANet

Fig. 6. Two Types Feature Pyramids [21]

The model head is also called the YOLO layer and is the step in which the object and
object position are predicted. The YOLO layer outputs vectors containing class
probability, confidence score and bounding box coordinates.

In the study, we used 4 versions of YOLOV5, which are named according to model
size and complexity, as small, medium, large and extra large. The results obtained when
these models are trained on the COCO dataset [6] are shown in Fig. 7 COCO is a dataset
of 80 classes and 330k images used as a benchmark to compare object detection
architectures.

> > B B

Small Medium Large XLarge
YOLOvSs  YOLOv5SmM YOLOvSI YOLOv5x
14 MB,,, 41 MB_, 90 MB_ . 168 MB_, .
20ms, 27 ms, 3.8ms, 6.1ms
37.2mAP__ . 445 mAP__ . 48.2 mAP__ . 50.4 mAP___,

Fig. 7. Yolov5 versions of different complexity [23]

Transfer Learning

Machine learning methods based on the use of neural networks are very data hungry.
Especially in applications based on computer vision, collecting a large number of images
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and annotating them all is a time-consuming and costly process. With transfer learning,
it has become possible to transfer basic and common features learned by models trained
on another domain to other models. Thus, while transferring low-level features, learning
only higher-level features in the new model can be achieved with relatively less data [26].
For this purpose, transfer learning was applied using models trained on the COCO dataset
by using their pre-trained weights.

Performance Evaluations

We used mAP@IloU=0.5 ( loU: Intersection over Union), mAP@IloU=0.5:0.95,
Precision, Recall and Inference time to compare the performance of the models. loU is a
fundamental metric used to compare object detection systems [15]. The relationship
between the ground truth bounding box annotated by us and the bounding box predicted
by the model is examined. It is calculated by dividing the intersection sets of these two
bounding boxes by their union sets (Fig. 8).

Predicted box

Ground Truth

)

Ground Truth

/

Predicted box

Fig. 8. loU calculation [8]

It is calculated as TP (True Positive) if loU is greater than the defined threshold value,
and as FP (False Positive) if it is small. Precision, Recall and mAP performance metrics
were calculated using the Eqgn. 1,2 and 3 respectively with the obtained TP, TN (True
Negative), FP and FN (False Negative) values. At mMAP@IloU=0.5, the threshold value is
0.5, and for mAP:10U=0.5:0.95, the threshold value has taken 10 different values between
0.5 and 0.95 in steps of 0.05.

Precision = Eqgn.1[8]
TP+FP
Recall = . Eqn.2 [8]
mAP = <3N, AP, Eqn.3 [8]

N: Number of queries, AP: Average precision
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Training

We used 1934 images for training each model variation of the object detection system.
In the models, we used the LR (Learning Rate) as 0.01, the photo size as 640 px (pixel),
the batch size as 16, and the number of epochs as 40. We used SGD (Stochastic Gradient
Descent) [17] as the optimization algorithm. We trained the models on Google Colab
using the Tesla K80 12GB GPU. Table 1 shows the number of layers of the models and
the number of trained parameters.

Table 1. Information on Model Variations Used in Training

Model Number of Layers Number of Parameters
YOLOvV5x 476 87.178.694
YOLOV5I 392 46.600.566
YOLOvV5m 308 21.037.638
YOLOvbs 224 7.053.910

Validation

For the validation of the trained model, we used a dataset of 482 images. We performed
the validation of all the trained models on Google Colab using Tesla K80 12 GB GPU.
As in the training phase, we used the image size as 640 px.

Testing Generalization of the Model

We used cabbage caterpillar images to test whether object detection models trained
with thistle caterpillar images can be generalized to caterpillar detection. We used a total
of 19 images of cabbage caterpillars encountered in September 2021 in a cabbage-
growing farm in the Muratbey District of Catalca - Istanbul - Turkey. There are 25
cabbage caterpillar instances in total on these 19 images. We used Google Colab Tesla
K80 12 GB GPU for object detection on the image. The image size was taken as 640 px,
in which the models were trained.

RESULTS AND DISCUSSION
Results without Transfer Learning

In models trained without transfer learning, we analyzed the Precision, Recall,
mAP@IoU:0.5 and mAP@I10U:0.5:0.95 metrics as a result of the training. Fig. 9 shows
the results of four different model variations. Since the training of the models was started
from scratch, it is seen that there are fluctuations in all model metrics, especially during
the first 20 epochs of training. We think that these fluctuations can be reduced by
increasing the number of epochs. We also observed strong decreases in mAP values in
YOLOv5x and YOLOVSI models after the 20th epoch. This is because these models
require longer epoch numbers or more data as they are more complex.
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5

After the training of the models was completed, we tried the versions with the best
results on the validation dataset. Validation dataset consists of 482 images. Trial results
can be seen in Table 2. The highest model size belongs to YOLOv5x as expected. The
highest mAP values were obtained in YOLOvV5s. The fastest detection time belongs to

YOLOvV5s with 18.3ms.
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Table 2. Validation dataset results without transfer learning

Model Precision Recall mAP mAP Inference  FPS Model
@IloU @IloU Time Size
05 :0.5:0.95

YOLOvSx 0.306 0.574 0.208 0.123 131.8ms 7.5 116.9MB
YOLOVSI 0.428 0.554 0.304 0.231 71.3ms 14 89.3MB
YOLOvSmM 0.563 0.613 0.437 0.271 44.5ms 22 40.4MB
YOLOv5s 0.629 0.617 0.482 0.285 18.3ms 55 13.7MB

MB: Megabyte, ms: millisecond, FPS: frame per second

Results with Transfer Learning

In models trained using transfer learning, we analyzed the Precision, Recall,
MAP@IoU:0.5 and mAP@I10U:0.5:0.95 metrics as a result of the training. Fig. 10 shows
the results of four different model variations. When we compare the training results using
transfer learning with the training results without transfer learning, the first thing that
stands out is that the transfer learning models have much more stable metric
measurements and converge to better results faster. In particular, the fact that the
YOLOv5x and YOLOV5I models remained in an upward trend in mAP measurements
indicates that training should be continued with more epochs.
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Fig. 10. Precision, Recall, mMAP@IoU:0.5 and mAP@10U:0.5:0.95 results with transfer
learning. (2)YOLOV5X, (b)YOLOVSI, (c)YOLOV5m, (d)YOLOV5s

After the training of the models was completed, we tried the versions with the best
results on the validation dataset. Validation dataset consists of 482 images. Trial results
can be seen in Table 3. The highest model size belongs to YOLOv5x as expected. The
highest mAP values were obtained in YOLOv5m. The YOLOv5m's detection time is
close to real-time detection, with 43.4ms. The fastest detection time belongs to YOLOv5s
with 15.3ms.
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Table 3. Validation dataset results with transfer learning

Models Precision Recall mAP mAP Inference  FPS Model
@loU @IloU Time Size
:0.5 :0.5:0.95

YOLOvV5X 0.743 0.697 0.588 0.464 132.9ms 8 116.9MB
YOLOVSI 0.747 0.690 0.589 0.463 70.3ms 14 89.3MB
YOLOv5mM 0.746 0.686 0.591 0.464 43.4ms 23 40.4MB
YOLOvSs 0.740 0.697 0.575 0.451 15.3ms 65 13.7MB

Testing Model as General Caterpillar Detector

Among the models trained and validated with and without transfer learning, the most
successful one was the YOLOv5m model, which we trained with transfer learning. This
model has been examined in terms of real-time object detection with images, which we
captured in a cabbage-growing farm in the Muratbey District of Catalca - Istanbul -
Turkey, have not been used in training and validation classes before. Here, we aimed to
test whether the model could be used as a general caterpillar detector.

We observed that the model could even detect a different caterpillar species under
different background, plant species and lighting conditions. It was able to detect more
than one object at the same time and when light comes from different angles. We used 19
images in total for testing generalization of the model. 19 of the 25 caterpillars in these
images were detected. The object detection system we designed made 3 FP, 6 FN
detections.
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caterpillar 0.81

.

Fig. 11. Detection results of YOLOv5m (trained with transfer learning) on different
caterpillar species

Discussion

Fig. 11 shows that our object detection system can be used even in different plant and
caterpillar species from the training and validation set of YOLOv5m, one of the models
trained with transfer learning.

As we can see in Fig. 12, the problems encountered in object detection in the developed
model can be divided into three parts. These problems are the inability to detect the object
due to blur and occlusion of the object on the image, and the examples that are incorrectly
detected due to the similarity of the shape. We used 2416 images for training and
validation in the study. We found that models trained in 40 epochs, 16 batches, and 640
px image sizes using the YOLOV5 architecture were able to achieve high mAP (59%) at
real-time inference speeds. These values obtained are comparable to studies which are
using two-stage object detection architectures, whose detection accuracy is higher than
the one-stage architectures we use [8]. Increasing the images similar to the object
detection errors we encounter in the dataset, as well as using the data augmentation
methods such as image blur will increase the object detection accuracy. It has been
observed that mAP can be increased with appropriate data augmentation methods in other
YOLO based studies [7].
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False
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Fig. 12. Common problems we encounter in our object detection system

CONCLUSIONS

In this study, we have developed an object detection system that can detect caterpillars
over digital images/videos by using the YOLOV5 single-stage object detection
architecture. We used a public dataset consisting of images taken in realistic outdoor
environments. We performed the training, validating and testing of the system on Google
Colab using Tesla K80 12GB GPU.

We reached 65 FPS detection speed and maximum 59% mAP values with the
parameters we trained. Moreover, our object detection system successfully detected
different species of caterpillar. The accuracy of the object detection system can be
improved by increasing the dataset size with new images added and data augmentation
methods. Also, by adding the images of the caterpillar larvae to the dataset, it can be
studied to detect the caterpillars in earlier periods. In addition, if different caterpillar
species are divided into subgroups and annotated based on subgroup names, a multiclass
detection model to detect caterpillar species can be developed.
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